

Turbulence Detection & Mitigation Element

Rod Bogue NASA Dryden Flight Research Center

Briefing Outline

Scope/Background

Accident Assessment Conclusions

Requirements

Goal

Approach

Relationships to Outside Groups

Technical Approach

WBS structure, Roadmaps, Deliverables, Tech Transfer

FY98-00 Results/Accomplishments to Date and Plans

Resources and Facilities

Risk Assessment and Mitigation

Summary

Scope of Turbulence Effort

- Turbulence from Natural Atmospheric Processes (+ Enroute Wake Vortex)
- Parts 121, 135, and 91 (Scheduled Carriers, Commuters & GA)
- Both Strategic (before TO) & Tactical (Enroute)
- Both Avoidance & Encounter Mitigation

Background

- Turbulence Costs
 - Leading Cause of In-Flight Injuries
 - Cost estimated at >\$100M/yr. for airlines
- Turbulence Initiators
 - Convective Storms (within and as far as 40 miles away from visible clouds in clear air)
 - Jet Stream (at confluence of multiple streams and near boundaries)
 - Mountain Wave (upward propagating from disturbances near the surface)

Conclusions from Accident Assessment

- GA and Air Carriers have fundamentally different Turbulence Accident Statistics
 - GA problems mostly below 15 kft, Air Carriers mostly above (not too surprising)
 - GA problems mostly with Convective Turbulence, Air Carriers about 50/50 Convective/Clear-Air
- Warning may have an impact on accident statistics
 - 84% of encounters had no crew warning
- Seat-Belt Sign status had little effect on injuries BUT a believable warning may impact injuries
 - In 64% of the encounters, the seat belt sign was ON
- Keeping Passengers belted has little or no effect on Attendant Injuries (not too surprising)
 - In 73% of the encounters Flight Attendants were injured

Hampton, Virginia - May 23-25 2000

Requirements in Response to Accident Data Conclusions

- Reliable Tactical Warning
 - Provide timely warning to deviate or to institute cabin safety measures
 - Provide real-time alerts to AWIN network
- Reliable Forecasting/Nowcasting
 - Collaborate with FAA to provide improved Forecasting/Nowcasting at useful resolutions for pre-takeoff strategic turbulence avoidance planning
- Encounter Mitigation
 - Develop technology to reduce severity of turbulence encounter experience

Goal

• To reduce the risk of turbulence-induced injury or death to the traveling public and airline staff by 80% in 10 years.

Approach

- Build a Turbulence Team from Industry, Academia, and Government to address requirements, approaches, and solutions
- Utilize the Commercial Aircraft Safety Team (CAST) to determine requirements for Air Carriers (http://www.cygnacom.com/turbulence/)
- Address Air Carrier Issues with Technology Approaches Combined with Rule-Making, and Improved Procedures
- Address GA Issues with improved Weather Products Disseminated through AWIN

Turbulence Team Relationships

WBS Structure

Detection

- Sensor Performance Assessment
- Sensor Development
- Requirements Definition (CAST)

Turbulence Characterization

- •Severe Events Database
- Hazard Metric Development
- Assessment of Existing Turbulence

Products

Forecasting/Nowcasting

- Algorithm Development
- Demonstration & Verification

Turbulent Tolerant Flt. Control Algorithm

Mitigation

- Demonstration & Verification
- •Strategic Route Management

Hampton, Virginia - May 23-25 2000

Technical Approach - Roadmap

Technical Approach - Major Deliverables/Products

- Detector Technology
 - Radar (software)
 - Lidar (hardware/software)
- Forecast Technology and Applications Support
 - Atmospheric gust characterization (300-3kft scale)
 - Small-scale atmospheric dynamics diagnostics
 - Route deviation cost trades/traffic management impacts
- Encounter Mitigation Technology
 - Flight management systems for turbulence penetration
 - Airframe systems for improving ride quality

Hampton, Virginia - May 23-25 2000

Technical Approach - Technology Transfer

- Upgrade Existing Installed Base
 - Weather radar turbulence algorithm
 - Turbulence tolerant flight control system
- Industry Buy-In
 - CAST requirements definition
 - Industry-based JSAT & JSIT groups
- Multi-Functional Technology
 - Lidar winds aloft

Team Accomplishments

- Teamed with Industry, Academia, & Government to assure comprehensive Requirements, Approaches, and Solutions
 - Collaborating using in-kind resource sharing minimizes funds transfer and procurement lead-time
 - Variety of perspectives reduces risk

• Flight tested ACLAIM forward-looking turbulence sensor

- Detected light to moderate turbulence at ranges between 3 and 6 miles ahead
- Penetrated turbulence to verify
- Operated 15 hours in a variety of conditions from ground to 25k ft.
- No turbulence encountered that was not predicted

- Supporting FAA AWR in-situ turbulence measurement program (jointly funded)
 - Eventual deployment in ~350 commercial aircraft to acquire turbulence accelerations
 - Early results expected within 2 years
 - Supports turbulence characterization work/auto PIREP
- Collaborating with industry partners to develop airborne Turbulence Sensing Systems using RADAR and LIDAR technology
 - Expected initial target fleet deployment within
 3 years
 - B-757 flight tests scheduled for FY00 and FY01

Collaborated with FAA to Organized Turbulence Workshop

- Strong cooperative interaction and mutual support
- Continuing support from Stakeholder Groups
- Genesis for initiating Commercial Aviation
 Safety Team (CAST) Assessment

- Explored low moisture turbulence environment in Greeley deployment
 - Compared ground and airborne radar measurements of convectively-induced turbulence in low dBz conditions
 - Penetrated turbulence to verify
 - 13 missions flown into turbulence over 3 week period
 - Teamed with NCAR, Honeywell, Rockwell,
 So. Dak. Sch. of Mines, Univ. of Colorado,
 NASA

• Commercial Aircraft Safety Team (CAST)

- Joint Safety Analysis Team (JSAT) began
 operation in October 1999
- FAA, ALPA & NASA Co-Chairs
- 35 Members from Aviation Community
- 6 Meetings Convened
- $-\sim 30$ Interventions Identified
- Expected completion by 30 September 2000

Resources and Facilities

Testbed Aircraft

- B757, DC-8, C-17, LearJet (govt.)
- L-188 Electra (NCAR)
- Convair 580, T39 (private industry)
- T-28 (Univ. North Dakota)

Simulators

- Aircraft
- IESS (Radar)

Aircraft Models

- B-747
- B-757
- B-737

Risk Assessment & Mitigation

- Cost prevents affordability
 - Multi-function capability
 - Emphasis on reducing manufacturing costs
- Anticipated infrastructure not ready
 - Scale back work to individual aircraft protection
- Detection technology performance falls short
 - Alert ranges reduced
 - Less sensitivity to low turbulence levels

Summary - Status of Elements

Turbulence Characterization

- Hazard metric work started
- Receiving added emphasis with funding augmentation

Detection

- Radar flight tests in FY-00
- Lidar flight tests in FY-00?

Forecasting/Nowcasting

- Initial FY00 start-up planning activity
- Turbulence forecast support planning for B-757 FY-00/01 field research flights
- Injury case study simulations with MASS and TASS models

Encounter Mitigation

 Assessing performance of existing control systems in turbulence

Hampton, Virginia - May 23-25 2000

Peanuts Perspective

Turbulence is NO Laughing Matter